Anti-GAD encephalitis in a child with beta-thalassemia after allogeneic hematopoietic stem cell transplantation
https://doi.org/10.17650/2073-8803-2023-18-2-3-52-58
Abstract
Glutamic acid decarboxylase (GAD) is an intracellular enzyme expressed in brain neurons and insulin-secreting β-cells of the pancreas. Anti-GAD-anitibodies are associated with type 1 diabetes mellitus, limbic encephalitis, cerebellar ataxia, temporal autoimmune epilepsy, and rigid man syndrome. We present a rare clinical case of anti-GAD-anitibodies- associated immune encephalitis in a child with beta-thalassemia after allogeneic hematopoietic stem cell transplantation (allo-HSCT).
A 3-year-old boy diagnosed with beta-thalassemia underwent allo-HSCT from a 9/10 compatible unrelated donor. The macrophage activation syndrome occurred during the early post-transplantation period. The seizure with a focal onset happened on day +65. The cytotoxic edema in the region of the left hippocampus without signs of accumulation of a contrast agent was revealed at the magnetic resonance imaging of the brain. Pleocytosis, increase in protein levels, infection and antibodies to receptors and synaptic proteins of neurons were not detected at the analysis of cerebrospinal fluid. A positive titer to anti-GAD-anitibodies was detected in the blood – 315.82 IU/ml (the norm is up to 10 IU/ml). The child was treated with cyclophosphamide 750 mg/m2, rituximab 375 mg/m2, and tocilizumab 8 mg/kg. The cytotoxic edema in the left hippocampus regressed at the control magnetic resonance imaging on day +117.
Infectious, immune and toxic agents can cause the damage of central nervous system in patients after allo-HSCT. The mechanism of immune damage to the central nervous system S in such patients is still being studied and may be different: expansion of autoreactive lymphocytes due to failure of T-cell regulation due to chemo- or immunosuppressive therapy, “passenger lymphocyte” syndrome, violation of T-cell regulation due to the course of infectious complications and acute graft versus host disease.
In a series of diagnostic searches in patients with central nervous system lesions after allo-HSCT, it is necessary to include immune damage to the nervous system. Diagnosis of such conditions is a difficult task due to comorbidity and multicomponent accompanying therapy, including immunosuppressive therapy, administered to patients.
About the Authors
N. V. BroninaRussian Federation
Natalya Vitalyevna Bronina
1/9 4-yy Dobryninskiy Pereulok, Moscow 119049
I. O. Schederkina
Russian Federation
1/9 4-yy Dobryninskiy Pereulok, Moscow 119049
43 Donskaya St., Moscow 115419
B. M. Kurmanov
Russian Federation
1/9 4-yy Dobryninskiy Pereulok, Moscow 119049
E. A. Burtsev
Russian Federation
1/9 4-yy Dobryninskiy Pereulok, Moscow 119049
M. V. Natrusova
Russian Federation
1 Ostrovityanova St., Moscow 117997
G. O. Bronin
Russian Federation
1/9 4-yy Dobryninskiy Pereulok, Moscow 119049
References
1. Давыдовская М.В., Бойко А.Н., Беляева И.А. и др. Аутоиммунные энцефалиты. Журнал неврологии и психиатрии им. С.С. Корсакова 2015;115(4):95–101. DOI: 10.17116/jnevro20151154195-10 @@Davydovskaya M.V., Boyko A.N., Belyaeva I.A. et al. Autoimmune encephalitis. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova = S.S. Korsakov Journal of Neurology and Psychiatry 2015;115(4):95–101. (In Russ.). DOI: 10.17116/jnevro20151154195-101
2. Шаповальянц О.С., Никонова Т.В. Диагностическая и прогностическая значимость аутоантител при сахарном диабете. Новый маркер аутоиммунного процесса – антитела к ZnT8. Сахарный диабет 2011;14(2):18–22. DOI: 10.14341/2072-0351-5629 @@Shapovalyants O.S., Nikonova T.V. Diagnostic and prognostic value of autoantibodies for diabetes mellitus. A novel T1D autoimmunity target – zinc transporter 8 (ZnT8). Sakharnyy diabet = Diabetes Mellitus 2011;14(2):18–22. (In Russ.). DOI: 10.14341/2072-0351-5629
3. Armstrong C., Sun L.R. Neurological complications of pediatric cancer. Cancer Metastasis Rev 2020;39(1):3–23. DOI: 10.1007/s10555-020-09847-0
4. Carreras E., Dufour C., Mohty M. et al. The EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies. 7th edn. Cham (CH): Springer, 2019. DOI: 10.1007/978-3-030-02278-5
5. Dade M., Berzero G., Izquierdo C. et al. Neurological syndromes associated with Anti-GAD antibodies. Int J Mol Sci 2020;21(10):3701. DOI: 10.3390/ijms21103701
6. Gagnon M.M., Savard M. Limbic encephalitis associated with GAD65 antibodies: brief review of the relevant literature. Can J Neurol Sci 2016;43(4):486–93. DOI: 10.1017/cjn.2016.13
7. Garg D., Mohammad S.S., Sharma S. Autoimmune encephalitis in children: an update. Indian Pediatr 2020;57(7):662–70.
8. Graus F., Titulaer M.J., Balu R. et al. A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15(4):391–404. DOI: 10.1016/S1474-4422(15)00401-9
9. Graus F., Vogrig A., Muñiz-Castrillo S. et al. Updated diagnostic criteria for paraneoplastic neurologic syndromes. Neurol Neuroimmunol Neuroinflamm 2021;8(4):e1014. DOI: 10.1212/NXI.0000000000001014
10. Gresa-Arribas N., Ariño H., Martínez-Hernández E. et al. Antibodies to inhibitory synaptic proteins in neurological syndromes associated with glutamic acid decarboxylase autoimmunity. PLoS One 2015;10(3):e0121364. DOI: 10.1371/journal.pone.0121364
11. Gultekin S.H., Rosenfeld M.R., Voltz R. et al. Paraneoplastic limbic encephalitis: neurological symptoms, immunological findings and tumor association in 50 patients. Brain 2000;123 (Pt 7):1481–94. DOI: 10.1093/brain/123.7.1481
12. Li Z., Rubinstein S.M., Thota R. et al. Immune-mediated complications after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2016;22(8):1368–75. DOI: 10.1016/j.bbmt.2016.04.005
13. Mitoma H., Ishida K., Shizuka-Ikeda M. et al. Dual impairment of GABAA- and GABAB-receptor-mediated synaptic responses by autoantibodies to glutamic acid decarboxylase. J Neurol Sci 2003;208(1–2):51–6. DOI: 10.1016/s0022-510x(02)00423-9
14. Mitoma H., Song S.Y., Ishida K. et al. Presynaptic impairment of cerebellar inhibitory synapses by an autoantibody to glutamate decarboxylase. J Neurol Sci 2000;175(1):40–4. DOI: 10.1016/ s0022-510x(00)00272-0
15. Nagai K., Maekawa T., Terashima H. et al. Severe anti-GAD antibody-associated encephalitis after stem cell transplantation. Brain Dev 2019;41(3):301–4. DOI: 10.1016/j.braindev.2018.10.006
16. Rakocevic G., Raju R., Dalakas M.C. Anti-glutamic acid decarboxylase antibodies in the serum and cerebrospinal fluid of patients with stiff-person syndrome: correlation with clinical severity. Arch Neurol 2004;61(6):902–4. DOI: 10.1001/archneur.61.6.902
17. Ricken G., Schwaiger C., De Simoni D. et al. Detection methods for autoantibodies in suspected autoimmune encephalitis. Front Neurol 2018;9:841. DOI:10.3389/fneur.2018.00841
18. Shin Y.W., Lee S.T., Park K.I. et al. Treatment strategies for autoimmune encephalitis. Ther Adv Neurol Disord 2017;11:1756285617722347. DOI: 10.1177/1756285617722347
19. Sillevis Smitt P., Grefkens J., de Leeuw B. et al. Survival and outcome
20. in 73 anti-Hu positive patients with paraneoplastic encephalomyelitis/ sensory neuronopathy. J Neurol 2002;249(6):745–53. DOI: 10.1007/s00415-002-0706-4
Review
For citations:
Bronina N.V., Schederkina I.O., Kurmanov B.M., Burtsev E.A., Natrusova M.V., Bronin G.O. Anti-GAD encephalitis in a child with beta-thalassemia after allogeneic hematopoietic stem cell transplantation. Russian Journal of Child Neurology. 2023;18(2-3):52-58. (In Russ.) https://doi.org/10.17650/2073-8803-2023-18-2-3-52-58