Dynamic electroencephalographic study of persons – mild COVID-19 convalescents
https://doi.org/10.17650/2073-8803-2022-17-4-44-53
Abstract
Background. The term “postcovid syndrome” is firmly entrenched in medical terminology, but many aspects of its clinical manifestations are not well understood.
Aim. To establish the presence of the nature and severity of changes in the bioelectrical activity of the brain in COVID-19 survivors, as well as their relationship with the formed clinical neurological and neuropsychological syndromes during convalescence.
Materials and methods. A dynamic study was conducted of 38 COVID-19 survivors returning to work. Neurophysiological studies were carried out using the EGI-GES-300 system (128 channels). The descriptive characteristics of electroencephalograms were built on the method of studying the spectral density of the electroencephalographic signal on the surface of the scalp, and the dynamic characteristics of the signal were studied by fixing electroencephalographic microstates, using the method of D. Lemmon and T. Kenning.
Results and conclusions. In the study, a relatively new diagnostic technique for studying cognitive impairments based on the analysis of electroencephalographic microstates was implemented, which made it possible to identify signs of functional restructuring of the neuronal macronetworks of the brain and trace the characteristic adaptation of a person during the period of convalescence.
Keywords
About the Author
S. A. GulyaevRussian Federation
Sergey Aleksandrovich Gulyaev
117997
Build. 10, 1 Ostrovityanova St.
Moscow
References
1. Luria A. R. Fundamentals of neuropsychology Proc. allowance for students. higher textbook establishments. Moscow: Publishing Center “Academy”, 2003. 384 p. (In Russ.)
2. Da Cruz J. R., Favrod O., Roinishvili M. et al. EEG microstates are a candidate endophenotype for schizophrenia. Nat Commun 2020; 11 (1): 3089. DOI: 10.1038/s41467-020-16914-1
3. Duong L., Xu P., Liu A. Meningoencephalitis without respiratory failure in a young female patient with COVID-19 infection in Downtown Los Angeles, early April 2020. Brain Behav Immun 2020;87:33. DOI: 10.1016/j.bbi.2020.04.024
4. Escaffre O., Borisevich V., Rockx B. Pathogenesis of Hendra and Nipah virus infection in humans. J Infect Dev Ctries 2013; 7 (4): 308–11. DOI: 10.3855/jidc.3648
5. Helms J., Kremer S., Merdji H. et al. Neurologic features in severe sars-cov-2 infection. N Engl J Med 2020; 382 (23): 2268–70. DOI: 10.1056/NEJMc2008597
6. Kubota T., Gajera P. K., Kuroda N. Meta-analysis of EEG findings in patients with COVID-19. Epilepsy Behav 2021;115:107682. DOI: 10.1016/j.yebeh.2020.107682
7. Lehmann D., Strik W. K., Henggeler B. et al. Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. Int J Psychophysiol 1998; 29 (1): 1–11. DOI: 10.1016/s0167-8760(97)00098-6
8. Michel C. M., Koenig T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. Neuroimage 2018; 180 (Pt B): 577–93. DOI: 10.1016/j.neuroimage.2017.11.062
9. Moriguchi T., Harii N., Goto J. et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis 2020; 94: 55–8. DOI: https://doi.org/10.1016/j.ijid.2020.03.062
10. Puelles V. G., Lütgehetmann M., Lindenmeyer M. T. et al. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med 20206;383(6):590–2. DOI: 10.1056/NEJMc2011400
11. Pascual-Marqui R. D., Michel C. M., Lehmann D. Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng 1995; 42 (7): 658–65. DOI: 10.1109/10.391164
12. Petrescu A. M., Taussig D., Bouilleret V. Electroencephalogram (EEG) in COVID-19: A systematic retrospective study. Neurophysiol Clin 2020; 50 (3): 155–65. DOI: 10.1016/j.neucli.2020.06.001
13. Rogers J. P., Chesney E., Oliver D. et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psych 2020; 7 (7): 611–27. DOI: 10.1016/S2215-0366(20)30203-0
14. Roy D., Ghosh R., Dubey S. et al. Can neurological and neuropsychiatric impacts of COVID-19 pandemic. J Neurol Sci 2021; 48 (1): 9–24. DOI: 10.1017/cjn.2020.173
15. Solomon I. H., Normandin E., Bhattacharyya S. et al. Neuropathological features of Covid-19. N Engl J Med 2020; 383 (10): 989–92. DOI: 10.1056/NEJMc2019373
16. Song E., Zhang C., Israelow B. et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med 2021; 218 (3): e20202135. DOI: 10.1084/jem.20202135
17. Tomescu M. I., Rihs T. A., Becker R. et al. Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents: A vulnerability marker of schizophrenia? Schizophr Res 2014; 157 (1–3): 175–81. DOI: 10.1016/j.schres.2014.05.036
18. Troyer E. A., Kohn J. N., Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behav Immun 2020;87: 34–9. DOI: 10.1016/j.bbi.2020.04.027
19. Van De Ville D., Britz J., Michel C. M. EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc Nat Acad Sci 2010; 107 (42): 18179–84; DOI: 10.1073/pnas.1007841107
20. Ye M., Ren Y., Lv T. Encephalitis as a clinical manifestation of COVID-19. Brain Behav Immun 2020;88:945, 946. DOI: 10.1016/j.bbi.2020.04.017
21. Wang G. F., Li W., Li K. Acute encephalopathy and encephalitis caused by influenza virus infection. Curr Opin Neurol 2010; 23 (3): 305–11. DOI: 10.1097/wco.0b013e328338f6c9
Review
For citations:
Gulyaev S.A. Dynamic electroencephalographic study of persons – mild COVID-19 convalescents. Russian Journal of Child Neurology. 2022;17(4):44-53. (In Russ.) https://doi.org/10.17650/2073-8803-2022-17-4-44-53