Preview

Russian Journal of Child Neurology

Advanced search

Genetic heterogeneity of congenital cerebral palsy and the concept of the neurotropic genome

https://doi.org/10.17650/2073-8803-2022-17-4-8-23

Abstract

Background. Currently, more than 500 genes are known, in one degree or another associated with the development of the phenotype of congenital cerebral palsy (CP). The amount of accumulated data requires the sorting of the mechanisms of the influence of genes on brain development.

Aim. To compare the spectrum of determinants in groups of patients with CP, accompanied (CP+) and non-accompanied (CP–) by epilepsy.

Materials and methods. 154 children with a phenotype of cerebral palsy aged from 1 to 17 years old were investigated. Boys – 92, girls – 62. Genetic mutations were confirmed by the methods of next generation sequencing (NGS) in the study of venous blood samples. Genes with anomalies were distributed to the groups of determinants for the main aspects of the development and function of the brain. A total of 13 groups were created.

Results. In the CP– group, determinants of cell dividing, brain development and cytoskeleton were identified in 11 (61.1 %) cases. In 4 (22.2 %) cases, determinants of cell metabolism and external cell membrane transport were identified. In the CP+ group in 23.5 % of cases, determinants of cell division, brain development and cytoskeleton were revealed. The number of patients with anomalies of chromatin modifications, transcription and replication processes was significantly less (4.4 %). In 42 (30.8 %), the CP+ patients found determinants of excitability of the neuronal membrane and excitation transmission. In the cases of brain malformations in both CP– and CP+ groups determinants of cellular division, brain development and cytoskeleton were identified. Interest caused cases of brain malformations with anomalies of genes of the channelopathy.

Conclusions. Our data suggests the difference between pathogenetic models CP+ and CP–. The fundamental difference of them is the presence of genes regulating the excitability of the neuronal membrane in CP+ group.

About the Authors

P. L. Sokolov
Scientific and Practical Center for Specialized Assistance for Children named after N. V. Voyno-Yasenetsky, Department of Healthcare of Moscow
Russian Federation

Pavel Leonidovich Sokolov

119620

38 Aviatorov St.

Moscow



N. V. Chebanenko
Russian Medical Academy of Postgraduate Education, Ministry of Health of Russia
Russian Federation

125993

1, 2/1 Barrikadnaya St.

Moscow



A. G. Prityko
Scientific and Practical Center for Specialized Assistance for Children named after N. V. Voyno-Yasenetsky, Department of Healthcare of Moscow
Russian Federation

119620

38 Aviatorov St.

Moscow



P. A. Romanov
Scientific and Practical Center for Specialized Assistance for Children named after N. V. Voyno-Yasenetsky, Department of Healthcare of Moscow
Russian Federation

119620

38 Aviatorov St.

Moscow



References

1. Sokolov P. I., Chebanenko N. V., Zykov V. P. et al. Congenital cerebral palsy: genetic cause and nosological integrity. Russkiy zhurnal detskoy nevrologii = Russian Journal of Child Neurology 2020; 15 (3–4): 65–77. (In Russ.). DOI: 10.17650/2073-8803-2020-15-3-4-65-77

2. Chegodayev D. A., Lvova O. A., Baranov D. A. Genetic aspects of the pathogenesis of cerebral palsy. Sistemnaya integratsiya v zdravookhranenii = System Integration in Healthcare 2012; 3 (17): 52–60. (In Russ.)

3. Baraitser M., Winter R. M. Iris coloboma, ptosis, hypertelorism, and mental retardation: a new syndrome. J Med Genet 1988;25(1): 41–3. DOI: 10.1136/jmg.25.1.41

4. Bi D., Chen M., Zhang X. et al. The association between sex-related interleukin-6 gene polymorphisms and the risk for cerebral palsy. Neuroinflammation 2014; 11: 100. DOI: 10.1186/1742-2094-11-100

5. Chacon-Camacho O. F., Barragán-Arévalo T., Villarroel C. E. et al. Previously undescribed phenotypic findings and novel ACTG1 gene pathogenic variants in Baraitser–Winter cerebrofrontofacial syndrome. Eur J Med Genet 2020; 63 (5): 103877. DOI: 10.1016/j.ejmg.2020.103877

6. Fong C. Y. I., Mumford A. D., Likeman M. J., Jardine F. E. Сerebral palsy in siblings caused by compound heterozygous mutations in the gene encoding protein C. Dev Med Child Neurol 2010; 52 (5): 489–93. DOI: 10.1111/j.1469-8749.2010.03618.x

7. Garduno-Robles A., Alata M., Piazza V. et al. MRI Features in a Rat Model of H-ABC Tubulinopathy. Front Neurosci 2020; 14: 555. DOI: 10.3389/fnins.2020.00555

8. Hou R., Ren X., Wang J., Guan X. TNF-α and MTHFR polymorphisms associated with cerebral palsy in chinese infants. Mol Neurobiol 2016; 53 (10): 6653–8. DOI:10.1007/s12035-015-9566-7

9. Hyde T. M., Lipska B. K., Ali T. et al. Expression of GABA signaling molecules KCC2, NKCC1, and GAD1 in cortical development and schizophrenia. J Neurosci 2011; 31: 11088–95. DOI: 10.1523/JNEUROSCI.1234-11.2011

10. Kakinuma N., Zhu Y., Wang Y. et al. Kank proteins: structure, functions and diseases. Cell Mol Life Sci 2009;66:2651–9. DOI: 10.1007/s00018-009-0038-y

11. Lee R. W., Poretti A., Cohen J. S. et al. A diagnostic approach for cerebral palsy in the genomic era. Neuromolecular Med 2014; 16 (4): 821–44. DOI: 10.1007/s12017-014-8331-9

12. Lerer I., Sagi M., Meiner V. et al. Deletion of the ANKRD15 gene at 9p24.3 causes parent-of-origin-dependent inheritance of familial cerebral palsy. Hum Mol Genet 2005; 14: 3911–20. DOI: 10.1093/hmg/ddi415

13. Lien E., Andersen G., Bao Y. et al. Genes determining the severity of cerebral palsy: the role of single nucleotide polymorphisms on the amount and structure of apolipoprotein E. Acta Paediatr 2015; 104 (7): 701–6. DOI: https://doi.org/10.1111/apa.12983

14. MacLennan A. H., Lewis S., Moreno-De-Luca A. et al. Genetic or other causation should not change the clinical diagnosis of cerebral palsy. J Child Neurol 2019; 34 (8): 472–6. DOI: 10.1177/0883073819840449

15. Mahley R. W., Weisgraber K. H., Huang Y. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc Natl Acad Sci USA 2006; 103 (15): 5644–51. DOI: 10.1172/JCI28632

16. McMichael G., Bainbridge M. N., Haan E. et al. Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol Psychiatry 2015; 20 (2): 176–82. DOI: 10.1038/mp.2014.189

17. Moreno-De-Luca A., Ledbetter D. H., Martin C. L. Genetic insights into the causes and classification of the cerebral palsies. Lancet Neurol 2012; 11 (3): 283–92. DOI: 10.1016/s1474-4422(11)70287-3

18. Mutch L., Alberman E., Hagberg B. et al. Cerebral palsy epidemiology: where are we now and where are we going? Dev Med Child Neurol 1992; 34 (6): 547–51. DOI: 10.1111/j.1469-8749.1992.tb11479.x

19. Nelson K. B., Dambrosia J. M., Iovannisci D. M. Genetic polymorphisms and cerebral palsy in very preterm infants. Pediatr Res 2005; 57 (4): 494-9. DOI: 10.1203/01.PDR.0000156477.00386.E7.

20. Park J., Koko M., Hedrich U. B. S. et al. KCNC1-related disorders: new de novo variants expand the phenotypic spectrum. Ann Clin Transl Neurol 2019; 6 (7): 1319–26. DOI: 10.1002/acn3.50799

21. Poirier K., Martinovic J., Laquerrière A. et al. Rare ACTG1 variants in fetal microlissencephaly. Eur J Med Genet 2015; 58 (8): 416–8. DOI: 10.1016/j.ejmg.2015.06.006

22. Rajatileka S., Odd D., Robinson M. T. et al. Variants of the EAAT2 glutamate transporter gene promoter are associated with cerebral palsy in preterm infants. Mol Neurobiol 2018; 55 (3): 2013–24. DOI: 10.1007/s12035-017-0462-1

23. Riviere J.-B., van Bon B. W. M., Hoischen A. et al. De novo mutations in the actin genes ACTB and ACTG1 cause Baraitser–Winter syndrome. Nat Genet 2012; 44 (4): 440–4, S1–2. DOI: 10.1038/ng.1091

24. Rosello M., Caro-Llopis A., Orellana C. et al. Hidden etiology of cerebral palsy: genetic and clinical heterogeneity and efficient diagnosis by next-generation sequencing. Pediatr Res 2020; 11. DOI: 10.1038/s41390-020-01250-3

25. Sun L., Xia L., Wang M. et al. Variants of the OLIG2 gene are associated with cerebral palsy in chinese han infants with hypoxic-ischemic encephalopathy. Neuromolecular Med 2019; 21 (1): 75–84. DOI:10.1007/s12017-018-8510-1

26. Takezawa Y., Kikuchi A., Haginoya K., Kure S. Reply to: A genomic cause of cerebral palsy should not change the clinical classification. Ann Clin Transl Neurol 2018; 5 (8): 1012. DOI: 10.1002/acn3.585

27. Thakran S., Guin D., Singh P. et al. Genetic landscape of common epilepsies: advancing towards precision in treatment. Int J Mol Sci 2020; 21 (20): 7784. doi: 10.3390/ijms21207784

28. Verloes A., Di Donato N., Masliah-Planchon J. et al. Baraitser-Winter cerebrofrontofacial syndrome: delineation of the spectrum in 42 cases. Eur J Hum Genet 2015; 23 (3): 292–301. DOI: 10.1038/ejhg.2014.95

29. Zhang J., Kim E. C., Chen C. et al. Identifying mutation hotspots reveals pathogenetic mechanisms of KCNQ2 epileptic encephalopathy. Sci Rep 2020; 10 (1): 4756. DOI: https://doi.org/10.1038/s41598-020-61697-6

30. Zhu Q., Ni Y., Wang J. et al. Identification of pathways and genes associated with cerebral palsy. Genes Genomics 2018; 40 (12): 1339–49. DOI: 10.1007/s13258-018-0729-6


Review

For citations:


Sokolov P.L., Chebanenko N.V., Prityko A.G., Romanov P.A. Genetic heterogeneity of congenital cerebral palsy and the concept of the neurotropic genome. Russian Journal of Child Neurology. 2022;17(4):8-23. (In Russ.) https://doi.org/10.17650/2073-8803-2022-17-4-8-23

Views: 404


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-8803 (Print)
ISSN 2412-9178 (Online)