Preview

Russian Journal of Child Neurology

Advanced search

Definition and new approaches to understanding the pathogenesis of Drave syndrome in children

https://doi.org/10.17650/2073-8803-2025-20-1-17-24

Abstract

Nowadays, Dravet syndrome is one of the most studied forms of genetic epilepsy. Despite a large number of studies and publications, Dravet syndrome remains a difficult neurological disease to treat. The relationship of epileptogenesis in Dravet syndrome with the activity of sodium channels has been studied, and data on the different effectiveness and ineffectiveness of anticonvulsant drugs with different mechanisms of action have been obtained. Drugs that modify neural transmission, enhance inhibitory transmission, and reduce excitatory transmission, as well as their combination, are more effective. Drugs that reduce the effect of inhibitory transmission (in particular, sodium channel blockers) should not be used. In our opinion, the correct choice of therapy for Dravet syndrome associated with a mutation in the SCN1A gene is possible only from the perspective of understanding the work of neural channels in the brain.

About the Authors

A. N. Ulyakov
Svt. Luka’s Institute of Child Neurology and Epilepsy; Russian Children Clinical Hospital – branch of the Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

Artur N. Ulyakov.

5, 8 Nagornaya St., Troitsk, Moscow 108842; 117 Leninskiy Prospekt, Moscow 119571



M. Yu. Bobylova
Svt. Luka’s Institute of Child Neurology and Epilepsy
Russian Federation

5, 8 Nagornaya St., Troitsk, Moscow 108842



V. S. Lobanova
Svt. Luka’s Institute of Child Neurology and Epilepsy; Morozov Children’s City Clinical Hospital, Moscow Healthcare Department
Russian Federation

5, 8 Nagornaya St., Troitsk, Moscow 108842; 1/9 4-yy Dobryninskiy Pereulok, Moscow 119049



К. Yu. Мukhin
Svt. Luka’s Institute of Child Neurology and Epilepsy
Russian Federation

5, 8 Nagornaya St., Troitsk, Moscow 108842



O. A. Pylaeva
Svt. Luka’s Institute of Child Neurology and Epilepsy
Russian Federation

5, 8 Nagornaya St., Troitsk, Moscow 108842



I. S. Tishchenko
Svt. Luka’s Institute of Child Neurology and Epilepsy; Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

5, 8 Nagornaya St., Troitsk, Moscow 108842; 1 Ostrovityanova St., Moscow 117513



S. O. Kazakov
Svt. Luka’s Institute of Child Neurology and Epilepsy; Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

5, 8 Nagornaya St., Troitsk, Moscow 108842; 1 Ostrovityanova St., Moscow 117513



References

1. Mukhin K.Yu., Glukhova L.Yu., Bobylova M.Yu. et al. Epileptic Syndromes. Diagnostics and Therapy. Handbook for Doctors. 5th edn. Moscow: Izdatelstvo “BINOM”, 2020. 672 p. (In Russ.).

2. Ahern C.A., Payandeh J., Bosmans F., Chanda B. The hitchhiker’s guide to the voltage-gated sodium channel galaxy. J Gen Physiol 2016;147:1–24. DOI: 10.1085/jgp.201511492

3. Biella G., Di Febo F., Goffredo D. et al. Differentiating embryonic stem derived neural stem cells show a maturation-dependent pattern of voltage-gated sodium current expression and graded action po- tentials. Neuroscience 2007;149:38–52. DOI: 10.1016/j.neuroscience.2007.07.021

4. Brunklaus A., Ellis R., Reavey E. et al. Prognostic, clinical and de- mographic features in SCN1A mutation-positive Dravet syndrome. Brain 2012;135:2329–36. DOI: 10.1093/brain/aws151

5. Brunklaus A., Zuberi S.M. Dravet syndrome – from epileptic encephalopathy to channelopathy. Epilepsia 2014;55(7):979–84. DOI: 10.1111/epi.12652

6. Catterall W.A. Voltage-gated sodium channels at 60: structure, function and pathophysiology. J Physiol 2012;590:2577–89. DOI: 10.1113/jphysiol.2011.224204

7. Catterall W.A., Goldin A.L., Waxman S.G. International Union of Pharmacology. XLVII. Nomenclature and structure-function re- lationships of voltage-gated sodium channels. Pharmacol Rev 2005;57:397–409. DOI: 10.1124/pr.57.4.4

8. Catterall W.A., Zheng N. Deciphering voltage-gated Na+ and Ca2+ channels by studying prokaryotic ancestors. Trends Biochem Sci 2015;40:526–34. DOI: 10.1016/j.tibs.2015.07.002

9. Cetica V., Chiari S., Mei D. et al. Clinical and genetic factors predicting Dravet syndrome in infants with SCN1A mutations. Neu- rology 2017;88:1037–44. DOI: 10.1212/WNL.0000000000003716

10. Ceulemans B., Cras P. Severe myoclonic epilepsy in infancy. Relevance for the clinician of severe epilepsy starting in infancy. Acta Neurol Belg 2004;104(3):95–9.

11. Cheah C.S., Westenbroek R.E., Roden W.H. et al. Correlations in timing of sodium channel expression, epilepsy, and sudden death in Dravet syndrome. Channels 2013;7:468–72. DOI: 10.4161/chan.26023

12. Claes L., Del-Favero J., Ceulemans B. et al. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 2001;68(6):1327–32. DOI: 10.1086/320609

13. Dravet C. Severe myoclonic epilepsy in infants and its related syndromes. Epilepsia 2000;41(Suppl 9):7. DOI: 10.1111/j.1528-1157.2000.tb02210.x

14. Dravet C., Bureau M., Oguni H. Dravet Syndrome (Severe Myoclonic Epilepsy in Infancy). Epileptic Syndromes in Infancy, Childhood and Adolescence. London: John Libbey Eurotext, 2012. Pp. 125–156.

15. Dravet C., Bureau M., Oguni H. et al. Severe myoclonic epilepsy in infancy (Dravet Syndrome). In: Epileptic Syndromes in Infancy, Childhood and Adolescence. 4th edn. London: John Libbey Eurotext Ltd, 2005. Pp. 89–113.

16. Gamal El-Din T.M., Lenaeus M.J., Catterall W.A. Structural and functional analysis of sodium channels viewed from an evolutionary perspective. Handb Exp Pharmacol 2018;246:53–72. DOI: 10.1007/164_2017_61

17. Human SCN1A Gene. Available at: http://www.gzneurosci.com/scn1adatabase/expression.php.

18. Isom L.L., Ragsdale D.S., De Jongh K.S. et al. Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell 1995;83:433–42. DOI: 10.1016/0092-8674(95)90121-3

19. Meng H., Xu H.Q., Yu L. et al. The SCN1A mutation database: updating information and analysis of the relationships among genotype, functional alteration, and phenotype. Hum Mutat 2015;36(6):573–80. DOI: 10.1002/humu.22782

20. Mouhi H.E., Abbassi M., Jalte M. et al. The genetic facets of Dravet syndrome: Recent INsights. Ann Child Neurol 2024;32(2):67–82.

21. Nabbout R., Desguerre I., Sabbagh S. et al. An unexpected EEG course in Dravet syndrome. Epilepsy Res 2008;81:90–5. DOI: 10.1016/j.eplepsyres.2008.04.015

22. Ogiwara I., Miyamoto H., Morita N. et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: A circuit basis for epileptic seizures in mice carrying an SCN1A gene mutation. J Neurosci 2007;27:5903–14. DOI: 10.1523/JNEUROSCI.5270-06.2007

23. Qu Y., Isom L.L., Westenbroek R.E. et al. Modulation of cardiac Na+ channel expression in Xenopus oocytes by beta 1 subunits. J Biol Chem 1995;270:25696–701. DOI: 10.1074/jbc.270.43.25696

24. SCN1A Variants Database. Available at: https://www.youtube.com/watch?v=h7wHS7IOT4M.

25. Stafstrom C.E. Severe epilepsy syndromes of early childhood: The link between genetics and pathophysiology with a focus on SCN1A mutations. J Child Neurol 2009;24:15–23. DOI: 10.1177/0883073809338152

26. Wirrell E.C., Hood V., Knupp K.G. et al. International consensus on diagnosis and management of Dravet syndrome. Epilepsia 2022;63(7):1761–77. DOI: 10.1111/epi.17274

27. Wu Y.W., Sullivan J., McDaniel S.S. et al. Incidence of Dravet syndrome in a US population. Pediatrics 2015;136:e1310–5. DOI: 10.1542/peds.2015-1807

28. Yu F.H., Catterall W.A. Overview of the voltage-gated sodium channel family. Genome Biol 2003;4(3):207. DOI: 10.1186/gb-2003-4-3-207

29. Yu F.H., Mantegazza M., Westenbroek R.E. et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci 2006;9:1142–9. DOI: 10.1038/nn1754


Review

For citations:


Ulyakov A.N., Bobylova M.Yu., Lobanova V.S., Мukhin К.Yu., Pylaeva O.A., Tishchenko I.S., Kazakov S.O. Definition and new approaches to understanding the pathogenesis of Drave syndrome in children. Russian Journal of Child Neurology. 2025;20(1):17-24. (In Russ.) https://doi.org/10.17650/2073-8803-2025-20-1-17-24

Views: 187


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-8803 (Print)
ISSN 2412-9178 (Online)