Epilepsy and congenital cerebral palsy: Parallels between the location of genome anomalies and clinical manifestations
https://doi.org/10.17650/2073-8803-2024-19-1-48-53
Abstract
Progress in molecular genetics is gradually leading to a radical revision of the understanding of the nature of not only recognized genetically determined diseases, but also those whose genetic nature has only been assumed. More and more information is emerging about polygenic and/or multifactorial diseases. The authors P.L. Sokolov and N.V. Chebanenko in 2022 proposed the concept of a neurotropic genome and the classification of genes, according to their “areas of responsibility” – points of application of determinant activity. There is a growing number of scientific works on the dependence of the pathological phenotype on the nature of the mutation and its localization along the gene.
In this article, using the example of Wolf–Hirschhorn syndrome, variants of the dependence of the phenotype on the location of the genome abnormality are considered. A case of a disease from the authors’ practice, in which epilepsy and cerebral palsy predominate, is presented; the phenotype is analyzed with the nature and location of the identified genetic anomaly. The authors make assumption about the connection between the nature and location of the genome anomaly and the characteristics of the phenotype.
Keywords
About the Authors
P. L. SokolovRussian Federation
Pavel Leonidovich Sokolov
38 Aviatorov St., Moscow 119620
N. V. Chebanenko
Russian Federation
Natalya Vladimirovna Chebanenko
Build. 1, 2/1 Barrikadnaya St., Moscow 125993
Yu. A. Fedotova
Russian Federation
Build. 1, 2/1 Barrikadnaya St., Moscow 125993
D. M. Mednaya
Russian Federation
1 Ostrovityanova St., Moscow 117997
References
1. Bobylova M.Yu., Mukhin K.Yu., Kuzmich G.V. et al. Epilepsy in Angelman syndrome. S.S. Korsakov Journal of Neurology and Psychiatry = Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova 2022;122(7):100–5. (In Russ.). DOI: 10.17116/jnevro2022122071100
2. Kosinova E.I., Zubtsova Т.I., Polshvedkina O.B., Kolesnikova Yu.G. Wolf–Hirschhorn syndrome: Review of three clinical cases. Meditsinskaya genetika = Medical Genetics 2023;22(1):36–42. (In Russ.). DOI: 10.25557/2073-7998.2023.01.36-42
3. Mironov M.B., Chebanenko N.V., Ayvazyan S.O. et al. Epilepsy combined with Wolf-Hirschhorn syndrome: A literature review and description of clinical cases. Epilepsiya i paroksizmalnye sostoyaniya = Epilepsy and paroxysmal conditions 2018;10(4):39–52. (In Russ.). DOI: 10.17749/2077-8333.2018.10.4.039-052
4. Sokolov P.L., Chebanenko N.V., Prityko A.G., Romanov P.A. Genetic heterogeneity of congenital cerebral palsy and the concept of the neurotropic genome. Russkiy zhurnal detskoy nevrologii = Russian Journal of Child Neurology 2022;17(4):8–23. (In Russ.). DOI: 10.17650/2073-8803-2022-17-4-8-23
5. Syrkina A.V., Chebanenko N.V., Zykov V.P., Mikhailova N.S. Jacobsen syndrome: Literature review and a case report. Russkiy zhurnal detskoy nevrologii = Russian Journal of Child Neurology 2022;17(2):55–60. (In Russ.). DOI: 10.17650/2073-8803-2022-17-2-55-60
6. Chebanenko N.V., Sokol P.L., Prityko A.G. Congenital cerebral palsy with epilepsy: Clinical and genetic comparisons. Russkiy zhurnal detskoy nevrologii = Russian Journal of Child Neurology 2022; 17(3):43–54. (In Russ.). DOI: 10.17650/2073-8803-2022-17-3-43-54
7. Yurchenko D.A., Minzhenkova M.E., Markova Z.G. et al. Variability of formation mechanisms of chromosomal imbalance in Wolf–Hirschhorn syndrome. Meditsinskaya genetika = Medical Genetics 2022;21(11):59–61. (In Russ.). DOI: 10.25557/2073-7998.2022.11.59-61
8. Balabhadra A., Parekh M., Patil A., Jayalakshmi S. A case of drugresistant epilepsy associated with ring chromosome 20. Ann Indian Acad Neurol 2021;24(5):805–7. DOI: 10.4103/aian.AIAN_1292_20
9. Briand-Suleau A., Martinovic J., Tosca L. et al. SALL4 and NFATC2: Two major actors of interstitial 20q13.2 duplication. Eur J Med Genet 2014;57(4):174–80. DOI: 10.1016/j.ejmg.2013.12.013
10. Corrêa T., Mayndra M., Santos-Rebouças C.B. Distinct epileptogenic mechanisms associated with seizures in Wolf–Hirschhorn syndrome. Mol Neurobiol 2022;59(5):3159–69. DOI: 10.1007/s12035-022-02792-9
11. Duval R., Nicolas G., Willemetz A. et al. Inherited glycosylphosphatidylinositol defects cause the rare Emmnegative blood phenotype and developmental disorders. Blood 2021;137(26):3660–9. DOI: 10.1182/blood.2020009810
12. Gavril E.C., Luca A.C., Curpan A.S. et al. Wolf–Hirschhorn syndrome: Clinical and genetic study of 7 new cases, and mini review. Children (Basel) 2021;8(9):751. DOI: 10.3390/children8090751
13. Giardino D., Vignoli A., Ballarati L. et al. Genetic investigations on 8 patients affected by ring 20 chromosome syndrome. BMC Med Genet 2010;11:146. DOI: 10.1186/1471-2350-11-146
14. Goetzinger L., Starks R.D., Dillahunt K. et al. Interstitial duplication of 20q11.22q13.11: A case report and review of literature. Mol Genet Genomic Med 2021;9(8):e1755. DOI: 10.1002/mgg3.1755
15. Gomes Mda M., Lucca I., Bezerra S.A. et al. Epilepsy and ring chromosome 20: Case report. Arq Neuropsiquiatr 2002;60(3–A):631–5. DOI: 10.1590/s0004-282x2002000400022
16. Ho K.S., South S.T., Lortz A. et al. Chromosomal microarray testing identifies a 4p terminal region associated with seizures in Wolf–Hirschhorn syndrome. J Med Genet 2016;53(4):256–63. DOI: 10.1136/jmedgenet-2015-103626
17. Jiang D., Zhao L., Clish C.B., Clapham D.E. Letm1, the mitochondrial Ca2+/H+ antiporter, is essential for normal glucose metabolism and alters brain function in Wolf–Hirschhorn syndrome. Proc Natl Acad Sci USA 2013;110(24):E2249–E2254. DOI: 10.1073/pnas.1308558110
18. Kumar V., Carlson J.E., Ohgi K.A. et al. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell 2002;10(4):857–69. DOI: 10.1016/s1097-2765(02)00650-0
19. Li Y., Tran Q., Shrestha R. et al. LETM1 is required for mitochondrial homeostasis and cellular viability (Review). Mol Med Rep 2019;19(5):3367–75. DOI: 10.3892/mmr.2019.10041
20. Park S., Jeon B.R., Lee Y.K. et al. The first Korean case of de novo proximal 4p deletion syndrome in a child with developmental delay. Ann Lab Med 2020;40(5):435–7. DOI: 10.3343/alm.2020.40.5.435
21. Patil A.A., Vinayan K.P., Roy A.G. Epilepsy in ring chromosome 20 syndrome might have variable clinical features. Ann Indian Acad Neurol 2020;23(5):718–22. DOI: 10.4103/aian.AIAN_32_20
22. Popescu D.E., Marian D., Zeleniuc M. et al. Features of the Wolf–Hirschhorn syndrome (WHS) from infant to young teenager. Balkan J Med Genet 2023;26(1):75–82. DOI: 10.2478/bjmg-2023-0006
23. Redler S., Strom T.M., Wieland T. et al. Variants in CPLX1 in two families with autosomal-recessive severe infantile myoclonic epilepsy and ID. Eur J Hum Genet 2017;25(7):889–93. DOI: 10.1038/ejhg.2017.52
24. Tremblay-Laganière C., Maroofian R., Nguyen T.T.M. et al. PIGG variant pathogenicity assessment reveals characteristic features within 19 families. Genet Med 2021;23(10):1873–81. DOI: 10.1038/s41436-021-01215-9
25. Uzay B., Kavalali E.T. Genetic disorders of neurotransmitter release machinery. Front Synaptic Neurosci 2023;15:1148957. DOI: 10.3389/fnsyn.2023.1148957
26. Zhang X., Lu H., Yang H. et al. Genotype-phenotype correlation of deletions and duplications of 4p: Case reports and literature review. Front Genet 2023;14:1174314. DOI: 10.3389/fgene.2023.1174314
27. Zhang X., Chen G., Lu Y., Liu J. et al. Association of mitochondrial letm1 with epileptic seizures. Cereb Cortex 2014;24:2533–40. DOI: 10.1093/cercor/bht118
28. Zollino M., Orteschi D., Ruiter M. et al. Unusual 4p16.3 deletions suggest an additional chromosome region for the Wolf–Hirschhorn syndrome-associated seizures disorder. Epilepsia 2014;55(6):849–57. DOI: 10.1111/epi.12617
Review
For citations:
Sokolov P.L., Chebanenko N.V., Fedotova Yu.A., Mednaya D.M. Epilepsy and congenital cerebral palsy: Parallels between the location of genome anomalies and clinical manifestations. Russian Journal of Child Neurology. 2024;19(1):48‑53. (In Russ.) https://doi.org/10.17650/2073-8803-2024-19-1-48-53