Preview

Russian Journal of Child Neurology

Advanced search

Ischemic stroke in a pediatric patient: complication of the course of COVID-19 (clinical case and literature review)

https://doi.org/10.17650/2073-8803-2022-17-2-47-54

Abstract

Recently, there is a growing number of publications about the complicated course of the COVID-19 in children. The literature describes only a few cases of acute cerebrovascular diseases. In the case described in this paper, an 11‑year-old boy presented with COVID-19 complicated by an ischemic stroke. Moderate ischemic stroke (pedNIHSS 14 points) occurred on the 7th day after infection with the SARS-CoV-2 and the background of the multisystem inflammatory syndrome. It has started with the left hemiplegia, hemianesthesia, central-type facial moderate palsy, and pseudobulbar palsy. Focal brain ischemia in the right hemisphere brain and occlusion of the right middle cerebral artery was confirmed by neuroimaging data. The treatment observed regression of neurological symptoms: there were minimal movements in his left arm and leg, facial muscles, also improved gulping and speech. After 1.5 months, the stroke was provided clinical examination: no markers predisposing to hypercoagulability or a prothrombotic state, as well as markers of systemic diseases. According to neuroimaging data, was occurred recanalization of occluded middle cerebral artery, was postischemic changes. This case shows the possibility of stroke against the background of COVID-19 in children without somatic problems and makes the doctor more vigilant during the treatment of COVID-19.

About the Authors

A. M. Shchetinina
V.A. Almazov National Medical Research Centre, Ministry of Health of Russia
Russian Federation

Alena Mikhaylovna Shchetinina

2 Akkuratova St., Saint Petersburg 197341



V. P. Ivanov
V.A. Almazov National Medical Research Centre, Ministry of Health of Russia
Russian Federation

2 Akkuratova St., Saint Petersburg 197341



A. V. Kim
V.A. Almazov National Medical Research Centre, Ministry of Health of Russia
Russian Federation

2 Akkuratova St., Saint Petersburg 197341



G. G. Ivanova
L.G. Sokolov Northwestern Research and Clinical Center, Federal Medical and Biological Agency
Russian Federation

4 Prospekt Kultury, Saint Petersburg 194291



V. A. Malko
V.A. Almazov National Medical Research Centre, Ministry of Health of Russia
Russian Federation

2 Akkuratova St., Saint Petersburg 197341



T. M. Alekseeva
V.A. Almazov National Medical Research Centre, Ministry of Health of Russia
Russian Federation

2 Akkuratova St., Saint Petersburg 197341



References

1. Abootalebi S., Aertker B., Sobhan Andalibi M. et al. Call to action: SARS-CoV-2 and CerebrovAscular DisordErs (CASCADE). J Stroke Cerebrovasc Dis 2020;29(9):104938. DOI: 10.1016/j.jstrokecerebrovasdis.2020.104938

2. Ahmad I., Rathore F.A. Neurological manifestations and complications of COVID-19: A literature review. J Clin Neurosci 2020;77:8–12. DOI: 10.1016/j.jocn.2020.05.017

3. Appavu B., Deng D., Dowling M.M. et al. Arteritis and large vessel occlusive strokes in children after COVID-19 infection. Pediatrics 2021;147(3):e2020023440. DOI: 10.1542/peds.2020-023440

4. Asadi-Pooya A.A., Simani L. Central nervous system manifestations of COVID-19: A systematic review. J Neurol Sci 2020;413:116832. DOI: 10.1016/j.jns.2020.116832

5. Asadi-Pooya A.A. Seizures associated with coronavirus infections. Seizure 2020;79:49–52. DOI: 10.1016/j.seizure.2020.05.005

6. Belopasov V.V., Yashu Y., Samoilova E.M., Baklaushev V.P. Damage to the nervous system in COVID-19. Clinical Practice 2020;2. Available at: https://cyberleninka.ru/article/n/porazhenie-nervnoysistemy-pri-sovid-19.

7. Bernard T.J., Manco-Johnson M.J., Lo W. et al. Towards a consensus-based classification of childhood arterial ischemic stroke. Stroke 2012;43(2):371–7. DOI: 10.1161/STROKEAHA.111.624585

8. Beslow L.A., Linds A.B., Fox C.K. et al. International Pediatric Stroke Study Group. Pediatric Ischemic Stroke: An Infrequent Complication of SARS-CoV-2. Ann Neurol 2021;89(4):657–65. DOI: 10.1002/ana.25991

9. Bhaskar S., Sinha A., Banach M. et al. Cytokine storm in COVID-19-immunopathological mechanisms, clinical considerations, and therapeutic approaches: The REPROGRAM Consortium Position Paper. Front Immunol 2020;11:1648. DOI: 10.3389/fimmu.2020.01648

10. Bohmer M., Niederstadt T., Heindel W. et al. Impact of childhood arterial ischemic stroke standardized classification and diagnostic evaluation classification on further course of arteriopathy and recurrence of childhood stroke. Stroke 2019;50(1):83–7. DOI: 10.1161/STROKEAHA.118.023060

11. Brann D.H., Tsukahara T., Weinreb C. et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv 2020;6(31):eabc5801. DOI: 10.1126/sciadv.abc5801

12. Burks J.S., DeVald B.L., Jankovsky L.D., Gerdes J.C. Two coronaviruses isolated from central nervous system tissue of two multiple sclerosis patients. Science 1980;209(4459):933–4. DOI: 10.1126/science.7403860

13. Chen W., Lan Y., Yuan X. et al. Detectable 2019-nCoV viral RNA in blood is a strong indicator for the further clinical severity. Emerg Microbes Infect 2020;9(1):469–73. DOI: 10.1080/22221751.2020.1732837

14. Colmenero I., Santonja C., Alonso-Riaño M. et al. SARS-CoV-2 endothelial infection causes COVID-19 chilblains: histopathological, immunohistochemical and ultrastructural study of seven paediatric cases. Br J Dermatol 2020;183(4):729–37. DOI: 10.1111/bjd.19327

15. Cullen W., Gulati G., Kelly B.D. Mental health in the COVID-19 pandemic. QJM 2020;113(5):311, 312. DOI: 10.1093/qjmed/hcaa110

16. Deffner F., Scharr M., Klingenstein S. et al. Histological evidence for the enteric nervous system and the choroid plexus as alternative routes of neuroinvasion by SARS-CoV-2. Front Neuroanat 2020;14:596439. DOI: 10.3389/fnana.2020.596439

17. De Veber G., Monagle P., Chan A. et al. Prothrombotic disorders in infants and children with cerebral thromboembolism. Arch Neurol 1998;55(12):1539–43. DOI:10.1001/archneur.55.12.1539

18. Dieselhorst V. Myalgien als Symptom der COVID-19-Erkrankung [Myalgia as symptom of COVID-19 illness]. Anaesthesist 2020;69(9):683. DOI: 10.1007/s00101-020-00826-2

19. Ding Y., Li He, Zhang Q. et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol 2004;203,2:622–30. DOI: 10.1002/path.1560

20. Duarte-Salles T. Baseline characteristics, management, and outcomes of 55,270 children and adolescents diagnosed with COVID-19 and 1,952,693 with influenza in France, Germany, Spain, South Korea and the United States: an international networkcohort study. medRxiv 2020.10.29.20222083. DOI: 10.1101/2020.10.29.20222083

21. Eberhardt K.A., Meyer-Schwickerath C., Heger E. et al. RNAemia corresponds to disease severity and antibody response in hospitalized COVID-19 Patients. Viruses 2020;12(9):1045. DOI: 10.3390/v12091045

22. Ellul M., Benjamin L., Singh B. et al. Neurological associations of COVID-19. Lancet Neurology 2020;19(9):767–83. DOI: 10.1016/S1474-4422(20)30221-0

23. Escher R., Breakey N., Lämmle B. ADAMTS13 activity, von Willebrand factor, factor VIII and D-dimers in COVID-19 inpatients. Thromb Res 2020;192:174, 175. DOI: 10.1016/j.thromres.2020.05.032

24. Escher R., Breakey N., Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res 2020;190:62. DOI: 10.1016/j.thromres.2020.04.014

25. Espíndola O.M., Brandão C.O., Gomes Y.C.P. et al. Cerebrospinal fluid findings in neurological diseases associated with COVID-19 and insights into mechanisms of disease development. Int J Infect Dis 2021;102:155–62. DOI: 10.1016/j.ijid.2020.10.044

26. Fenrich M., Mrdenovic S., Balog M. et al. SARS-CoV-2 dissemination through peripheral nerves explains multiple organ injury. Front Cell Neurosci 2020;14:229. DOI: 10.3389/fncel.2020.00229

27. Goshua G., Pine A.B., Meizlish M.L. et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a singlecentre, cross-sectional study. Lancet Haematol 2020;7(8): e575–e582. DOI: 10.1016/S2352-3026(20)30216-7

28. Götzinger F., Santiago-García B., Noguera-Julián A. et al. COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study. Lancet Child Adolesc Health 2020;4(9):653–61. DOI: 10.1016/S2352-4642(20)30177-2

29. Hedrich C.M., Schnabel A., Hospach T. Kawasaki disease. Front Pediatr 2018;6:198. DOI: 10.3389/fped.2018.00198

30. Helms J., Kremer S., Merdji H. et al. Neurologic Features in Severe SARS-CoV-2 Infection. N Engl J Med 2020;382(23):2268–70. DOI: 10.1056/NEJMc2008597

31. Hogan C.A., Stevens B.A., Sahoo M.K. et al. High frequency of SARS-CoV-2 RNAemia and association with severe disease. Clin Infect Dis 2020:ciaa1054. DOI: 10.1093/cid/ciaa1054

32. Hojyo S., Uchida M., Tanaka K. How COVID-19 induces cytokine storm with high mortality 2021. DOI: 10.1186/s41232-020-00146-3

33. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395(10223):497–506. DOI: 10.1016/S0140-6736(20)30183-5

34. Johns Hopkins University Medicine. Coronavirus Resource Centre. Available at: https://coronavirus.jhu.edu/map.html.

35. Lechien J.R., Chiesa-Estomba C.M., De Siati D.R. et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-tomoderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol 2020;277(8):2251–61. DOI: 10.1007/s00405-020-05965-1

36. Li H., Liu L., Zhang D., Xu J. et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet 2020;395(10235):1517–20. DOI: 10.1016/S0140-6736(20)30920-X

37. Li Z. The evidence of porcine hemagglutinating encephalomyelitis virus induced nonsuppurative encephalitis as the cause of death in piglets. Peer J 2016;4:e2443. DOI: 10.7717/peerj.2443

38. Liu J.W., de Luca R.D., Mello Neto H.O., Barcellos I. Post-COVID-19 Syndrome? New daily persistent headache in the aftermath of COVID-19. Arq Neuropsiquiatr 2020;78(11):753, 754. DOI: 10.1590/0004-282X20200187

39. Manne B.K., Denorme F., Middleton E.A. et al. Platelet gene expression and function in patients with COVID-19. Blood 2020;136(11):1317–29. DOI: 10.1182/blood.2020007214

40. Mao L., Jin H., Wang M. et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol 2020;77(6):683–90. DOI: 10.1001/jamaneurol.2020.1127

41. Marzano A.V., Cassano N., Genovese G. et al. Cutaneous manifestations in patients with COVID-19: a preliminary review of an emerging issue. Br J Dermatol 2020;183(3):431–42. DOI: 10.1111/bjd.19264

42. Mazza M.G., De Lorenzo R., Conte C. et al. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun 2020;89:594–600. DOI: 10.1016/j.bbi.2020.07.037

43. Moriguchi T., Harii N., Goto J. et al. A first case of meningitis/ encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis 2020;94:55–8. DOI: 10.1016/j.ijid.2020.03.062

44. Oxley T.J., Mocco J., Majidi S. et al. Large-vessel stroke as a presenting feature of COVID-19 in the young. N Engl J Med 2020;382(20):e60. DOI: 10.1056/NEJMc2009787

45. Pellegrini L., Albecka A., Mallery D.L. et al. SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids. Cell Stem Cell 2020;27:951–961.e955. DOI: 10.1016/j.stem.2020.10.001

46. Rogers J.P., Chesney E., Oliver D. et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 2020;7(7):611–27. DOI: 10.1016/S2215-0366(20)30203-0

47. Rogers J.P., Chesney E., Oliver D. et al. Psychiatric and neuropsychiatric syndromes and COVID-19 – Authors’ reply. Lancet Psychiatry 2020;7(8):664, 665. DOI: 10.1016/S2215-0366(20)30304-7

48. Santonja C., Heras F., Núñez L., Requena L. COVID‐19 chilblainlike lesion: immunohistochemical demonstration of SARS‐CoV‐2 spike protein in blood vessel endothelium and sweat gland epithelium in a polymerase chain reaction‐negative patient. Br J Dermatol 2020;183:778–80. DOI: 10.1111/bjd.19338

49. Soy M., Atagündüz P., Atagündüz I. et al. Hemophagocytic lymphohistiocytosis: A review inspired by the COVID-19 pandemic. Rheumatol Int 2021;41:7–18. DOI: 10.1007/s00296-020-04636-y

50. Stefano G.B. Historical insight into infections and disorders associated with neurological and psychiatric sequelae similar to long COVID. Med Sci Monit 2021;27:e931447. DOI: 10.12659/MSM.931447

51. Swann O.V., Holden K.A., Turtle L. et al. Clinical characteristics of children and young people admitted to hospital with covid-19 in United Kingdom: prospective multicentre observational cohort study. BMJ 2020;370:m3249. DOI: 10.1136/bmj.m3249

52. Toscano G., Palmerini F., Ravaglia S. et al. Guillain–Barré syndrome associated with SARS-CoV-2. N Engl J Med 2020;382(26):2574–76. DOI: 10.1056/NEJMc2009191

53. Varatharaj A., Pollak T.A., Nicholson T.R. et al. Characterising neuropsychiatric disorders in patients with COVID-19 – Authors’ reply. Lancet Psychiatry 2020;7(11):934, 935. DOI: 10.1016/S2215-0366(20)30420-X

54. Varatharaj A., Thomas N., Ellul M.A. et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry 2020;7(10):875–82. DOI: 10.1016/S2215-0366(20)30287-X

55. Varga Z., Flammer A.J., Steiger P. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020;395(10234):1417, 1418. DOI: 10.1016/S0140-6736(20)30937-5

56. Veyer D., Kernéis S., Poulet G. et al. Highly sensitive quantification of plasma SARS-CoV-2 RNA shelds light on its potential clinical value. Clin Infect Dis 2020:1196. DOI: 10.1093/cid/ciaa1196

57. World Health Organization. Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003. Available at: https://www.who.int/publications/m/item/summary-of-probablesars-cases-with-onset-of-illness-from-1-november-2002-to-31-july-2003.

58. Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the chinese center for disease control and prevention. JAMA 2020; 323(13):1239–42. DOI: 10.1001/jama.2020.2648

59. Zhang S., Liu Y., Wang X. et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J Hematol Oncol 2020;13(1):120. DOI: 10.1186/s13045-020-00954-7


Review

For citations:


Shchetinina A.M., Ivanov V.P., Kim A.V., Ivanova G.G., Malko V.A., Alekseeva T.M. Ischemic stroke in a pediatric patient: complication of the course of COVID-19 (clinical case and literature review). Russian Journal of Child Neurology. 2022;17(2):47-54. (In Russ.) https://doi.org/10.17650/2073-8803-2022-17-2-47-54

Views: 686


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-8803 (Print)
ISSN 2412-9178 (Online)