Preview

Russian Journal of Child Neurology

Advanced search

Congenital cerebral palsy: genetic cause and nosological integrity

https://doi.org/10.17650/2073-8803-2020-15-3-4-65-77

Abstract

The review provides an analysis of 73 full-text articles, the source of which was the Medline, OMIM, NCBI, Pubmed, Scopus, eLibrary.ru databases. The data of studies of the main pathogenetic mechanisms of the formation of the cerebral palsy (CP) phenotype, such as chromosomal aberrations, copy number variations, single nucleotide polymorphisms, associated with the development of the CP phenotype, are reviewed and analyzed. Epigenetic effects on the genome, as well as the effects of the genome on the mechanisms of epigenomic regulation, are examined in detail. The data on the genetic determinism of concomitant pathology and reactivity to therapeutic tactics are presented. Based on the study of data from numerous studies, the authors draw the following conclusions:

1) the pathogenesis of the phenotype of CP includes a large number of genes that determine violations of cellular metabolism, neuroontogenesis, brain resistance to hypoxia, etc;

2) genes whose abnormalities form a syndromic pathology are involved in the pathogenesis of CP;

3) the multidirectionality and breadth of the effects of the gene pool with the outcome in a syndrome-specific distinctive picture of the CP allows us to propose the concept of a neurotropic genome;

4) the mechanisms of gene involvement can vary from aberrations to epigenetic imbalances;

5) different groups of genes can differentially influence the formation of individual syndromes in the phenotype of CP;

6) there are data indicating a genetic determinism of the tendency to contracture, pharmacoreactivity to drugs that reduce muscle tone, reactivity to habilitation effects;

7) genomic-epigenomic interactions normally ensure the body’s adaptation to environmental conditions, and with pathology, they increase the likelihood of regulatory breakdowns that lead to the formation of a CP phenotype;

8) the exclusion from the diagnosis of CP of genetically determined cases of phenotype development is incorrect.

The authors present two anthropogenic reasons for the increase in the frequency of occurrence of de novo identified gene abnormalities:

1) anthropogenic impact on the environment, increasing the number of anomalies of the genome de novo; 2) iatrogenic effects of technologies for preserving life, vitality and reproductive ability of carriers of genomic anomalies. This effect leads to the fixation of anomalies in the genome of the population.

A paradox is formulated, according to which, in the presence of technologies capable of preserving the life of carriers of genomic anomalies, in vivo technologies for genome correction are only just beginning to be put into practice. Based on this, it is concluded that it is necessary to intensify the development of methods for prenatal diagnosis and gene therapy of CP.

About the Authors

P. I. Sokolov
V.F. Voyno-Yasenetskiy Research and Practical Center of Specialized Care for Children, Moscow Healthcare Department
Russian Federation
38 Aviatorov St., Moscow 119620


N. V. Chebanenko
Russian Medical Academy of Postgraduate Education, Ministry of Health of Russia
Russian Federation
Build. 1, 2/1 Barrikadnaya St., Moscow 125993


V. P. Zykov
Russian Medical Academy of Postgraduate Education, Ministry of Health of Russia
Russian Federation
Build. 1, 2/1 Barrikadnaya St., Moscow 125993


I. V. Kanivets
Russian Medical Academy of Postgraduate Education, Ministry of Health of Russia; Genomed LLC
Russian Federation

Build. 1, 2/1 Barrikadnaya St., Moscow 125993

8 Podolskoe shosse, Moscow 115093



A. G. Prityko
V.F. Voyno-Yasenetskiy Research and Practical Center of Specialized Care for Children, Moscow Healthcare Department
Russian Federation
38 Aviatorov St., Moscow 119620


P. A. Romanov
V.F. Voyno-Yasenetskiy Research and Practical Center of Specialized Care for Children, Moscow Healthcare Department
Russian Federation
38 Aviatorov St., Moscow 119620


References

1. Prityko A.G., Chebanenko N.V., Sokolov P.L. et al. Genetic aspects of pathogenesis of congenital spastic cerebral paralysis. Acta Biomedica Scientifica 2019;4(3):28–39. (In Russ.). DOI: 10.29413/ABS.2019-4.3.4.

2. Agarwal S., Emrick L. De novo mutations in patients with ataxic CP. Pediatr Neurol Briefs 2015;29(8):62. DOI: 10.15844/pedneurbriefs-29-8-5.

3. Bahado-Singh R.O., Vishweswaraiah S., Aydas B. et al. Deep learning/artificial intelligence and blood-based DNA epigenomic prediction of cerebral palsy. Int J Mol Sci 2019;20(9):2075. DOI: 10.3390/ijms20092075.

4. Bi D., Chen M., Zhang X. et al. The association between sex-related interleukin-6 gene polymorphisms and the risk for cerebral palsy. J Neuroinflammation 2014;11:100. DOI: 10.1186/1742-2094-11-100.

5. Butler M.G. Clinical and genetic aspects of the 15q11.2 BP1-BP2 microdeletion disorder. J Intellect Disabil Res 2017;61(6):568–79. DOI: 10.1111/jir.12382.

6. Caffarelli C., Santamaria F., Di Mauro D. et al. Progress in pediatrics in 2015: choices in allergy, endocrinology, gastroenterology, genetics, haematology, infectious diseases, neonatology, nephrology, neurology, nutrition, oncology and pulmonology. Ital J Pediatr 2016;42(1):75. DOI: 10.1186/s13052-016-0288-x.

7. Carratala-Marco F., Andreo-Lillo P., Martinez-Morga M. et al. Clinical phenotypes associated to engrailed 2 gene alterations in a series of neuropediatric patients. Front Neuroanat 2018;12:61. DOI: 10.3389/fnana.2018.00061.

8. Cheng X., Li T., Wang H. et al. Methylenetetrahydrofolate reductase gene polymorphisms and cerebral palsy in Chinese infants. J Hum Genet 2011;56(1):17–21. DOI: 10.1038/jhg.2010.127.

9. Corbett M.A., van Eyk C.L., Webber D.L. et al. Pathogenic copy number variants that affect gene expression contribute to genomic burden in cerebral palsy. NPJ Genom Med 2018;3(1):33. DOI: 10.1038/s41525-018-0073-4.

10. Devlin A.M., Brain U., Austin J., Oberlander T.F. Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth. PLoS One 2010;5(8):e12201. DOI: 10.1371/journal.pone.0012201.

11. Diaz Heijtz R., Almeida R., Eliasson A.C., Forssberg H. Genetic variation in the dopamine system influences intervention outcome in children with cerebral palsy. E Bio Medicine 2018;28:162–7. DOI: 10.1016/j.ebiom.2017.12.028.

12. Ebrahimi-Fakhari D., Cheng C., Dies K. et al. Clinical and genetic characterization of AP4B1-associated SPG47. Am J Med Genet A 2018;176(2):311–18. DOI: 10.1002/ajmg.a.38561.

13. Erickson R.P. The importance of de novo mutations for pediatric neurological disease – it is not all in utero or birth trauma. Mutat Res Rev Mutat Res 2016;767:42–58. DOI: 10.1016/j.mrrev.2015.12.002.

14. Esih K., Goričar K., Dolžan V., Rener-Primec Z. The association between antioxidant enzyme polymorphisms and cerebral palsy after perinatal hypoxicischaemic encephalopathy. Eur J Paediatr Neurol 2016;20(5):704–8. DOI: 10.1016/j.ejpn.2016.05.018.

15. Fahey M.S., Maclennan A.H., Kretzscmar D. et al. The genetic basis of cerebral palsy. Dev Med Child Neurol 2017;59(5):462–9. DOI: 10.1111/dmcn.13363.

16. Fong C.Y., Mumford A.D., Likeman M.J., Jardine Ph.E. Cerebral palsy in siblings caused by compound heterozygous mutations in the gene encoding protein. Dev Med Child Neurol 2010;52(5):489–93. DOI: 10.1111/j.1469-8749.2010.03618.x.

17. Gümüş E., Aras B.D., Çilingir O. et al. Apolipoprotein E allelic variants and cerebral palsy. Turk J Pediatr 2018;60(4):361–71. DOI: 10.24953/turkjped.2018.04.002.

18. Hannon E., Lunnon K., Schalkwyk L., Mill J. Interindividual methylomic variation across blood, cortex, and cerebellum: implications for epigenetic studies of neurological and neuropsychiatric phenotypes. Epigenetics 2015;10(11):1024–32. DOI: 10.1080/15592294.2015.1100786.

19. Haraksingh R.R., Snyder M.P. Impacts of variation in the human genome on gene regulation. J Mol Biol 2013;425(21):3970–7. DOI: 10.1007/s13258-018-0729-6.

20. Hermanns P., Kumorowicz-Czoch M., Grasberger H. et al. Novel mutations in the NKX2.1 gene and the PAX8 gene in a boy with brain-lung-thyroid syndrome. Exp Clin Endocrinol Diabetes 2018;126(2):85–90. DOI: 10.1055/s-0043-119875.

21. Jeong H., Huh H.J., Youn J. et al. Ataxia-telangiectasia with novel splicing mutations in the ATM gene. Ann Lab Med 2014;34(1):80–4. DOI: 10.3343/alm.2014.34.1.80.

22. Jiao Z., Jiang Z., Wang J. et al. Whole genome scale identification of methylation markers specific for cerebral palsy in monozygotic discordant twins. Mol Med Rep 2017;16(6):9423–30. DOI: 10.3892/mmr.2017.7800.

23. Kakinuma N., Zhu Y., Wang Y. et al. Kank proteins: structure, functions and diseases. Cell Mol Life Sci 2009;66:2651–9. DOI: 10.1007/s00018-009-0038-y.

24. Kasapkara C.S., Akar M., Ozbek M.N. et al. Mutations in BTD gene causing biotinidase deficiency: a regional report. J Pediatr Endocrinol Metab 2015;28(3–4): 421–4. DOI: 10.1515/jpem-2014-0056.

25. Khankhanian P., Baranzini S.E., Johnson B.A. et al. Sequencing of the IL6 gene in a case-control study of cerebral palsy in children. BMC Med Genet 2013;14:126. DOI: 10.1186/1471-2350-14-126.

26. Kojima K., Nakajima T., Taga N. et al. Gene therapy improves motor and mental function of aromatic L-amino acid decarboxylase deficiency. Brain 2019;142(2):322–33. DOI: 10.1093/brain/awy331.

27. Kruer M.C., Jepperson T., Dutta S. et al. Mutations in gamma adducin are associated with inherited cerebral palsy. Ann Neurol 2013;74(6):805–14. DOI: 10.1002/ana.23971.

28. Kubota N., Yokoyama T., Hoshi N., Suyama M. Identification of a candidate enhancer for DMRT3 involved in spastic cerebral palsy pathogenesis. Biochem Biophys Res Commun 2018;496(1):133–9. DOI: 10.1016/j.bbrc.2018.01.011.

29. Lee R.W., Poretti A., Cohen J.S. Diagnostic approach for cerebral palsy in the genomic era. Neuromolecular Med 2014;16(4):821–44. DOI: 10.1007/s12017-014-8331-9.

30. Lerer I., Sagi M., Meiner V. Deletion of the ANKRD15 gene at 9p24.3 causes parent-of-origin-dependent inheritance of familial cerebral palsy. Hum Mol Genet 2005;14:3911–20. DOI: 10.1093/hmg/ddi415.

31. Li H., Wang X.L., Wu Y.Q. et al. Correlation of the predisposition of Chinese children to cerebral palsy with nucleotide variation in pri-miR-124 that alters the non-canonical apoptosis pathway. Acta Pharmacol Sin 2018;39(9):1453–62. DOI: 10.1038/aps.2017.211.

32. Lien E., Andersen G., Bao Y. et al. Genes determining the severity of cerebral palsy: the role of single nucleotide polymorphisms on the amount and structure of apolipoprotein E. Acta Paediatr J 2015;104(7):701–6. DOI: 10.1111/apa.12983

33. Lillycrop K.A., Costello P.M., Teh A.L. et al. Association between perinatal methylation of the neuronal differentiation regulator HES1 and later childhood neurocognitive function and behaviour. Int J Epidemiol 2015;44:1263–76. DOI: 10.1093/ije/dyv052.

34. Lin S., Li T., Zhu D. et al. The association between GAD1 gene polymorphisms and cerebral palsy in Chinese infants. Cytol Genet 2013;47(5):276–81. DOI: 10.3103/s0095-45271-30500-71.

35. Lynex C.N., Carr I.M., Leek J.P. et al. Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff–Person Syndrome and other movement disorders. BMC Neurol 2004;4(1):20. DOI: 10.1186/1471-2377-4-20.

36. MacLennan A.H., Lewis S., Moreno-De-Luca A. et al. Genetic or other causation should not change the clinical diagnosis of cerebral palsy. J Child Neurol 2019;34(8):472–6. DOI: 10.1177/0883073819840449.

37. MacLennan A.H., Thompson S.C., Gecz J. Cerebral palsy: causes, pathways, and the role of genetic variants. Am J Obstet Gynecol 2015;213(6):779–88. DOI: 10.1016/j.ajog.2015.05.034.

38. Mansell T., Novakovic B., Meyer B. et al. The effects ofmaternal anxiety during pregnancy on IGF2/H19 methylation in cord blood. Transl Psychiatry 2016;6(3):765. DOI: 10.1038/tp.2016.32.

39. Mansell T., Vuillermin P., Ponsonby A.L. et al. Maternal mental well-being during pregnancy and glucocorticoid receptor gene promoter methylation in the neonate. Dev Psychopathol 2016;28(4 Pt 2):1421–30. DOI: 10.1017/S0954579416000183.

40. Marsit C.J., Maccani M.A., Padbury J.F., Lester B.M. Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome. PLoS One 2012;7(3):e33794. DOI: 10.1371/journal.pone.0033794.

41. Matthews A.M., Blydt-Hansen I., Al-Jabri B. et al. Atypical cerebral palsy: genomics analysis enables precision medicine. Genet Med 2019;21(7):1621–8. DOI: 10.1038/s41436-018-0376-y.

42. McLaughlin M.J., He Y., Brunstrom-Hernandez J. et al. Pharmacogenomic variability of oral baclofen clearance and clinical response in children with cerebral palsy. PMR 2018;10(3):235–43. DOI: 10.1016/j.pmrj.2017.08.441.

43. McMichael G., Bainbridge M.N., Haan E. et al. Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol Psychiatry 2015;20(2):176–82. DOI: 10.1038/mp.2014.189.

44. McMichael G., Girirajan S., Moreno-De-Luca A. et al. Rare copy number variation in cerebral palsy. Eur J Hum Genet 2014;22(1):40–5. DOI: 10.1038/ejhg.2013.93.

45. McMichael G., Haan E., Gardner A. et al. NKX2-1 mutation in a family diagnosed with ataxic dyskinetic cerebral palsy. Eur J Med Genet 2013;56(9):506–9. DOI: 10.1016/j.ejmg.2013.07.003.

46. Mohandas N., Bass-Stringer S., Maksimovic J. et al. Epigenome-wide analysis in newborn blood spots from monozygotic twins discordant for cerebral palsy reveals consistent regional differences in DNA methylation. Clin Epigenetics 2018;10:25. DOI: 10.1186/s13148-018-0457-4.

47. Moreno-De-Luca A., Ledbetter D.H., Martin C.L. Genetic insights into the causes and classification of the cerebral palsies. Lancet Neurol 2012;11(3):283–92. DOI: 10.1016/s1474-4422(11)70287-3.

48. O’Donnell K., O’Connor T.G., Glover V. Prenatal stress and neurodevelopment of the child: Focus on the HPA axis and role of the placenta. Dev Neurosci 2009; 31:285–92. DOI: 10.1159/000216539.

49. O’Donnell K., Bugge Jensen A., Freeman L. et al. Maternal prenatal anxiety and down regulation of placental 11_HSD2. Psychoneuroendocrinology 2012;37:818–26. DOI: 10.1016/j.psyneuen.2011.09.014.

50. O’Callaghan M.E., Maclennan A.H., Gibson C.S. Australian Collaborative Cerebral Palsy Research Group. Fetal and maternal candidate single nucleotide polymorphism associations with cerebral palsy: a case-control study. Pediatrics 2012;129(2):e414–23. DOI: 10.1542/peds.2011-0739.

51. Peter B., Lancaster H., Vose C. et al. Тwo unrelated children with overlapping 6q25.3 deletions, motor speech disorders, and language delays. Am J Med Genet A 2017;173(10):2659–69. DOI: 10.1002/ajmg.a.38385.

52. Pingel J., Andersen J.D., Christiansen S.L. et al. Sequence variants in muscle tissue- related genes may determine the severity of muscle contractures in cerebral palsy. Am J Med Genet B Neuropsychiatr Genet 2019;180(1):12–24. DOI: 10.1002/ajmg.b.32693.

53. Rajatileka S., Odd D., Robinson M.T. et al. Variants of the EAAT2 glutamate transporter gene promoter are associated with cerebral palsy in preterm infants. Mol Neurobiol 2018;55(3):2013–24. DOI: 10.1007/s12035-017-0462-1.

54. Schnekenberg R.P., Perkins E.M., Miller J.W. et al. De novo point mutations in patients diagnosed with ataxic cerebral palsy. Brain 2015;138(Pt 7):1817–32. DOI: 10.1093/brain/awv117.

55. Subramanian V.S., Constantinescu A.R., Benke P.J., Said H.M. Mutations in SLC5A6 associated with brain, immune, bone, and intestinal dysfunction in a young child. Hum Genet 2017;136(2):253–61. DOI: 10.1007/s00439-016-1751-x.

56. Takezawa Y., Kikuchi A., Haginoya K. et al. Genomic analysis identifies masqueraders of full-term cerebral palsy. Ann Clin Transl Neurol 2018;5(5):538–51. DOI: 10.1002/acn3.551.

57. Tessa A., Battini R., Rubegni A. Identification of mutations in AP4S1/SPG52 through next generation sequencing in three families. Eur J Neurol. 2016; 23(10):1580–7. DOI: 10.1111/ene.13085.

58. Tollånes M.C., Wilcox A.J., Lie R.T., Moster D. Familial risk of cerebral palsy: population based cohort study. BMJ 2014; 349:g4294. DOI: 10.1136/bmj.g4294.

59. Torres-Merino S., Moreno-Sandoval H.N., Thompson-Bonilla M.D.R. et al. Association between rs3833912/rs16944 SNPs and risk for cerebral palsy in mexican children. Mol Neurobiol 2019;56(3):1800–11. DOI: 10.1007/s12035-018-1178-6.

60. Tüysüz B., Bilguvar K., Koçer N. et al. Autosomal recessive spastic tetraplegia caused by AP4M1 and AP4B1 gene mutation: expansion of the facial and neuroimaging features. Am J Med Genet A 2014;164A(7):1677–85. DOI: 10.1002/ajmg.a.36514.

61. Van Eyk C.L., Corbett M.A., Maclen - nan A.H. The emerging genetic landscape of cerebral palsy. Handb Clin Neurol 2018;147:331–42. DOI: 10.1016/B978-0-444-63233-3.00022-1.

62. Vanzo R.J., Martin M.M., Sdano M.R., South S.T. Familial KANK1 deletion that does not follow expected imprinting pattern. Eur J Med Genet 2013;56(5): 256–9. DOI: 10.1016/j.ejmg.2013.02.006.

63. Verkerk A.J., Schot R., Dumee B. et al. Mutation in the AP4M1 gene provides a model for neuroaxonal injury in cerebral palsy. Am J Hum Genet 2009;85:40–52. DOI: 10.1016/j.ajhg.2009.06.004.

64. Von Walden F., Gantelius S., Liu C. et al. Muscle contractures in patients with cerebral palsy and acquired brain injury are associated with extracellular matrix expansion, pro-inflammatory gene expression, and reduced rRNA synthesis. Muscle Nerve 2018;58(2):277–85. DOI: 10.1002/mus.26130.

65. Wallis M.J., Boys A., Tassano E., Delatycki M.B. Small interstitial 9p24.3 deletions principally involving KANK1 are likely benign copy number variants. Eur J Med Genet 2020;63(1):103618. DOI: 10.1016/j.ejmg.2019.01.008.

66. Walton E., Hass J., Liu J. et al. Correspondence of DNA methylation between blood and brain tissue and its application to schizophrenia research. Schizophr Bull 2016;42(2):406–14. DOI: 10.1093/schbul/sbv074.

67. Wang H., Xu Y., Chen M. et al. Genetic association study of adaptor protein complex 4 with cerebral palsy in a Han Chinese population. Mol Biol Rep 2013;40(11):6459–67. DOI: 10.1007/s11033-013-2761-6.

68. Weaver I.C., Cervoni N., Champagne F.A. et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004;7:847–54. DOI: 10.1038/nn1276.

69. Wu Y.W., Croen L.A., Vanderwerf A. et al. Candidate genes and risk for CP: a population-based study. N Pediatr Res 2011;70(6):642–6. DOI: 10.1203/PDR.0b013e31823240dd.

70. Xu Y., Wang H., Sun Y. The association of apolipoprotein E gene polymorphisms with cerebral palsy in Chinese infants. Mol Genet Genomics 2014;289(3):411–6. DOI: 10.1007/s00438-014-0818-4.

71. Yuan Y. Study of global DNA methylation in monozygotic twins with cerebral palsy. Pak J Pharm Sci 2017;30(4 Suppl):1467–73.

72. Zarre I.M., Fehlings D.L., Mawjee K. et al. De novo and rare inherited copy-number variations in the hemiplegic form of cerebral palsy. Genet Med 2018;20(2): 172–80. DOI: 10.1038/gim.2017.83.

73. Zouvelou V., Yubero D., Apostolakopoulou L. et al. The genetic etiology in cerebral palsy mimics: The re-sults from a Greek tertiary care center. Eur J Paediatr Neurol 2019;23(3):427–37. DOI: 10.1016/j.ejpn.2019.02.001.


Review

For citations:


Sokolov P.I., Chebanenko N.V., Zykov V.P., Kanivets I.V., Prityko A.G., Romanov P.A. Congenital cerebral palsy: genetic cause and nosological integrity. Russian Journal of Child Neurology. 2020;15(3-4):65-77. (In Russ.) https://doi.org/10.17650/2073-8803-2020-15-3-4-65-77

Views: 1240


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2073-8803 (Print)
ISSN 2412-9178 (Online)